Как делать теплотехнический расчет

 

Произведен теплотехнический расчет трехслойной стены для региона Нижний Новгород. Рассказано о том, как влияет воздушная прослойка на теплотехнические свойства стены. Чтобы в жилище было тепло в самые сильные морозы, необходимо правильно подобрать систему теплоизоляции – для этого выполняют теплотехнический расчет наружной стены.

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Исходные данные

1. Климат местности и микроклимат помещения

Район строительства: г. Нижний Новгород.

Назначение здания: жилое.

Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна - 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).

Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).

Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);

Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);

Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).

2. Конструкция стены

Стена состоит из следующих слоев:

  • Кирпич декоративный (бессер) толщиной 90 мм;
  • утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком "Х", так как она будет найдена в процессе расчета;
  • силикатный кирпич толщиной 250 мм;
  • штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.

3. Теплофизические характеристики материалов

Значения характеристик материалов сведены в таблицу.

Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.

Расчет

4. Определение толщины утеплителя

Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.

4.1. Определение нормы тепловой защиты по условию энергосбережения

Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:

Dd = (tint - tht)zht = (20 + 4,1)215 = 5182°С×сут

Примечание: также градусо-сутки имеют обозначение - ГСОП.

Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:

Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м2×°С/Вт,

где: Dd - градусо-сутки отопительного периода в Нижнем Новгороде,

a и b - коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП ) для стен жилого здания (столбец 3).

4.1. Определение нормы тепловой защиты по условию санитарии

В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).

Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):

где: n = 1 - коэффициент, принятый по таблице 6 [1] для наружной стены;

tint = 20°С - значение из исходных данных;

text = -31°С - значение из исходных данных;

Δtn = 4°С - нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;

αint = 8,7 Вт/(м2×°С) - коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.

4.3. Норма тепловой защиты

Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0=3,214м2×°С/Вт.

5. Определение толщины утеплителя

Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:

где: δi- толщина слоя, мм;

λi - расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м2×°С/Вт.

3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м2×°С/Вт.

4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м2×°С/Вт.

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина "Теплопотери здания. Справочное пособие"):

где: Rint = 1/αint = 1/8,7 - сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 - сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;

ΣRi = 0,094 + 0,287 + 0,023 - сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м2·°С/Вт

Толщина утеплителя равна (формула 5,7 [5]):

где: λут - коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):

где: ΣRт,i - сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м2·°С/Вт.

Из полученного результата можно сделать вывод, что

R0 = 3,503м2×°С/Вт > Rтр0 = 3,214м2×°С/Вт следовательно, толщина утеплителя подобрана правильно.

Необходимые нормативные документы

Необходимые нормативные документы

Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:

  • СНиП 23-02-2003 (СП ). "Тепловая защита зданий". Актуализированная редакция от 2012 года [1].
  • СНиП 23-01-99* (СП ). "Строительная климатология". Актуализированная редакция от 2012 года [2].
  • СП 23-101-2004. "Проектирование тепловой защиты зданий" [3].
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). "Здания жилые и общественные. Параметры микроклимата в помещениях" [4].
  • Пособие. Е.Г. Малявина "Теплопотери здания. Справочное пособие" [5].

Скачать СНиПы и СП вы можете здесь, ГОСТ - здесь, а Пособие - здесь.

Как сделать теплотехнический расчет наружной стены

Вначале следует подготовить исходные данные. На расчетный параметр влияют следующие факторы:

  • климатический регион, в котором находится дом;
  • назначение помещения – жилой дом, производственное здание, больница;
  • режим эксплуатации здания – сезонный или круглогодичный;
  • наличие в конструкции дверных и оконных проемов;
  • влажность внутри помещения, разница внутренней и наружной температуры;
  • число этажей, особенности перекрытия.

После сбора и записи исходной информации определяют коэффициенты теплопроводности строительных материалов, из которых изготовлена стена. Степень усвоения тепла и теплоотдачи зависит от того, насколько сырым является климат. В связи с этим для вычисления коэффициентов используют карты влажности, составленные для Российской Федерации. После этого все числовые величины, необходимые для расчета, вводятся в соответствующие формулы.

Рассчитываемые параметры

Рассчитываемые параметры

В процессе выполнения теплотехнического расчета определяют:

  • теплотехнические характеристики строительных материалов ограждающих конструкций;
  • приведённое сопротивление теплопередачи;
  • соответствие этого приведённого сопротивления нормативному значению.

Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.

Программа «Теремок»

Для выполнения расчета с помощью персонального компьютера специалисты часто используют программу для теплотехнического расчета «Теремок». Она существует в онлайн-варианте и как приложение для оперативных систем.

Программа производит вычисления на основе всех необходимых нормативных документов. Работа с приложением предельно проста. Оно позволяет выполнять работу в двух режимах:

  • расчет необходимого слоя утеплителя;
  • проверка уже продуманной конструкции.

В базе данных имеются все необходимые характеристики для населенных пунктов нашей страны, достаточно лишь выбрать нужный. Также необходимо выбрать тип конструкции: наружная стена, мансардная кровля, перекрытие над холодным подвалом или чердачное.

При нажатии кнопки продолжения работы появляется новое окно, позволяющее «собрать» конструкцию. Многие материалы имеются в памяти программы. Они подразделены на три группы для удобства поиска: конструкционные, теплоизоляционные и теплоизоляционно-конструкционные. Нужно задать лишь толщину слоя, теплопроводность программа укажет сама.

При отсутствии необходимых материалов их можно добавить самостоятельно, зная теплопроводность.

Перед тем как производить вычисления, необходимо выбрать тип расчета над табличкой с конструкцией стены. В зависимости от этого программа выдаст либо толщину утеплителя, либо сообщит о соответствии ограждающей конструкции нормам. После завершения вычислений, можно сформировать отчет в текстовом формате.

«Теремок» очень удобен для пользования и с ним способен разобраться даже человек без технического образования. Специалистам же он значительно сокращает время на вычисления и оформление отчета в электронном виде.

Главным достоинством программы является тот факт, что она способна вычислить толщину утепления не только наружной стены, но и любой конструкции. Каждый из расчетов имеет свои особенности, и непрофессионалу довольно сложно разобраться во всех. Для строительства частного дома достаточно освоить данное приложение, и не придется вникать во все сложности. Расчет и проверка всех ограждающих поверхностей займет не более 10 минут.

Формулы для производства расчета

Фото 2

Утечки тепла, теряемого домом, можно разделить на две основные части: потери через ограждающие конструкции и потери, вызванные функционированием вентиляционной системы. Кроме того, тепло теряется при сбросе теплой воды в канализационную систему.

Потери через ограждающие конструкции

Для материалов, из которых устроены ограждающие конструкции, нужно найти величину показателя теплопроводности Кт (Вт/м х градус). Они есть в соответствующих справочниках.

Теперь, зная толщину слоев, по формуле: R = S/Кт, высчитывают термическое сопротивление каждой единицы. Если конструкция многослойная, все полученные значения складывают.

Размеры тепловых потерь проще всего определить путем сложения тепловых течений через ограждающие конструкции, которые собственно и образуют это здание

Руководствуясь такой методикой, к учету принимают тот момент, что материалы, составляющие конструкции, имеют неодинаковую структуру. Также учитывается, что поток тепла, проходящий сквозь них, имеет разную специфику.

Для каждой отдельной конструкции теплопотери определяют по формуле:

Q = (A / R) х dT

Здесь:

  • А — площадь в м².
  • R — сопротивление конструкции теплопередаче.
  • dT — разность температур снаружи и изнутри. Определять ее нужно для самого холодного 5- дневного периода.

Выполняя расчет таким образом, можно получить результат только для самого холодного пятидневного периода. Общие теплопотери за весь холодный сезон определяют путем учета параметра dT, учитывая температуру не самую низкую, а среднюю.

В какой степени усваивается тепло, а также теплоотдача зависит от влажности климата в регионе. По этой причине при вычислениях применяют карты влажности

Далее, высчитывают количество энергии, необходимой для компенсации потерь тепла, ушедшего как через ограждающие конструкции, так и через вентиляцию. Оно обозначается символом W.

Для этого есть формула:

W = ((Q + Qв) х 24 х N)/1000

В ней N — длительность отопительного периода в днях.

Недостатки расчета по площади

Расчет, основанный на площадном показателе, не отличается большой точностью. Здесь не принят во внимание такой параметр, как климат, температурные показатели как минимальные, так и максимальные, влажность. Из-за игнорирования многих важных моментов расчет имеет значительные погрешности.

Часто стараясь перекрыть их, в проекте предусматривают «запас».

Если все же для расчета выбран этот способ, нужно учитывать следующие нюансы:

  1. При высоте вертикальных ограждений до трех метров и наличии не более двух проемов на одной поверхности, результат лучше умножить на 100 Вт.
  2. Если в проект заложен балкон, два окна либо лоджия, умножают в среднем на 125 Вт.
  3. Когда помещения промышленные или складские, применяют множитель 150 Вт.
  4. В случае расположения радиаторов вблизи окон, их проектную мощность увеличивают на 25%.

Формула по площади имеет вид:

Q=S х 100 (150) Вт.

Здесь Q — комфортный уровень тепла в здании, S — площадь с отоплением в м². Числа 100 или 150 — удельная величина тепловой энергии, расходуемой для нагрева 1 м².

Потери через вентиляцию дома

Ключевым параметром в этом случае является кратность воздухообмена. При условии, что стены дома паропроницаемые, эта величина равна единице.

Проникновение холодного воздуха в дом осуществляется по приточной вентиляции. Вытяжная вентиляция способствует уходу теплого воздуха. Снижает потери через вентиляцию рекуператор-теплообменник. Он не допускает ухода тепла вместе с выходящим воздухом, а входящие потоки он нагревает

Предусматривается полное обновление воздуха внутри здания за один час. Здания, построенные по стандарту DIN, имеют стены с пароизоляцией, поэтому здесь кратность воздухообмена принимают равной двум.

Есть формула, по которой определяют теплопотери через систему вентиляции:

Qв = (V х Кв : 3600) х Р х С х dT

Здесь символы обозначают следующее:

  1. Qв — теплопотери.
  2. V — объем комнаты в мᶾ.
  3. Р — плотность воздуха. еличина ее принимается равной 1,2047 кг/мᶾ.
  4. Кв — кратность воздухообмена.
  5. С — удельная теплоемкость. Она равна 1005 Дж/кг х С.

По итогам этого расчета можно определить мощность теплогенератора отопительной системы. В случае слишком высокого значения мощности выходом из ситуации может стать устройство вентиляции с рекуператором. Рассмотрим несколько примеров для домов из разных материалов.

Пример теплотехнического расчета №1

Рассчитаем жилой дом, находящийся в 1 климатическом районе (Россия), подрайон 1В. Все данные взяты из таблицы 1 СНиП 23-01-99. Наиболее холодная температура, наблюдающаяся на протяжении пяти дней обеспеченностью 0,92 — tн = -22⁰С.

В соответствии со СНиП отопительный период (zоп) продолжается 148 суток. Усредненная температура на протяжении отопительного периода при среднесуточных температурных показателях воздуха на улице 8⁰ — tот = -2,3⁰. Температура снаружи в отопительный сезон — tht = -4,4⁰.

Теплопотери дома — важнейший момент на этапе его проектирования. От итогов расчета зависит и выбор стройматериалов, и утеплителя. Нулевых потерь не бывает, но стремиться нужно к тому, чтобы они были максимально целесообразными

Оговорено условие, что в комнатах дома должна быть обеспечена температура 22⁰. Дом имеет два этажа и стены толщиной 0,5 м. Высота его — 7 м, габариты в плане — 10 х 10 м. Материал вертикальных ограждающих конструкций — теплая керамика. Для нее коэффициент теплопроводности — 0,16 Вт/м х С.

В качестве наружного утеплителя, толщиной 5 см, использована минеральная вата. Значение Кт для нее — 0,04 Вт/м х С. Количество оконных проемов в доме — 15 шт. по 2,5 м² каждое.

Теплопотери через стены

Прежде всего, нужно определить термическое сопротивление как керамической стены, так и утеплителя. В первом случае R1 = 0,5 : 0,16 = 3,125 кв. м х С/Вт. Во втором — R2 = 0,05 : 0,04 = 1,25 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = + = кв. м х С/Вт.

Так как теплопотери имеют прямо пропорциональную взаимосвязь с площадью ограждающих конструкций, рассчитываем площадь стен:

А = 10 х 4 х 7 – 15 х 2,5 = 242,5 м²

Теперь можно определить потери тепла через стены:

Qс = (242,5 : ) х (22 – (-22)) = 2438,9 Вт.

Теплопотери через горизонтальные ограждающие конструкции рассчитывают аналогично. В итоге все результаты суммируют.

Если есть подвал, то теплопотери через фундамент и пол будут меньшими, поскольку в расчете участвует температура грунта, а не наружного воздуха

Если подвал под полом первого этажа отапливается, пол можно не утеплять. Стены подвала все же лучше обшить утеплителем, чтобы тепло не уходило в грунт.

Определение потерь через вентиляцию

Чтобы упростить расчет, не учитывают толщину стен, а просто определяют объем воздуха внутри:

V = 10х10х7 = 700 мᶾ.

При кратности воздухообмена Кв = 2, потери тепла составят:

Qв = (700 х 2) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 20 776 Вт.

Если Кв = 1:

Qв = (700 х 1) : 3600) х 1,2047 х 1005 х (22 – (-22)) = 10 358 Вт.

Эффективную вентиляцию жилых домов обеспечивают роторные и пластинчатые рекуператоры. КПД у первых выше, он достигает 90%.

Пример теплотехнического расчета №2

Требуется произвести расчет потерь сквозь стену из кирпича толщиной 51 см. Она утеплена 10-сантиметровым слоем минеральной ваты. Снаружи – 18⁰, внутри — 22⁰. Габариты стены — 2,7 м по высоте и 4 м по длине. Единственная наружная стена помещения ориентирована на юг, внешних дверей нет.

Для кирпича коэффициент теплопроводности Кт = 0,58 Вт/мºС, для минеральной ваты — 0,04 Вт/мºС. Термическое сопротивление:

R1 = 0,51 : 0,58 = 0,879 кв. м х С/Вт. R2 = 0,1 : 0,04 = 2,5 кв. м х С/Вт. В целом для вертикальной ограждающей конструкции: R = R1 + R2 = + 2,5 = кв. м х С/Вт.

Площадь внешней стены А = 2,7 х 4 = 10,8 м²

Потери тепла через стену:

Qс = (10,8 : ) х (22 – (-18)) = 127,9 Вт.

Для расчета потерь через окна применяют ту же формулу, но термическое сопротивление их, как правило, указано в паспорте и рассчитывать его не нужно.
В теплоизоляции дома окна — «слабое звено». Через них уходит довольно большая доля тепла. Уменьшат потери многослойные стеклопакеты, теплоотражающие пленки, двойные рамы, но даже это не поможет избежать теплопотерь полностью

Если в доме окна с размерами 1,5 х 1,5 м ² энергосберегающие, ориентированы на Север, а термическое сопротивление равно 0,87 м2°С/Вт, то потери составят:

Qо = (2,25 : 0,87) х (22 – (-18)) = 103,4 т.

Пример теплотехнического расчета №3

Выполним тепловой расчет деревянного бревенчатого здания с фасадом, возведенным из сосновых бревен слоем толщиной 0,22 м. Коэффициент для этого материала — К=0,15. В этой ситуации теплопотери составят:

R = 0,22 : 0,15 = 1,47 м² х ⁰С/Вт.

Самая низкая температура пятидневки — -18⁰, для комфорта в доме задана температура 21⁰. Разница составит 39⁰. Если исходить из площади 120 м², получится результат:

Qс = 120 х 39 : 1,47 = 3184 Вт.

Для сравнения определим потери кирпичного дома. Коэффициент для силикатного кирпича — 0,72.

R = 0,22 : 0,72 = 0,306 м² х ⁰С/Вт.
Qс = 120 х 39 : 0,306 = 15 294 Вт.

В одинаковых условиях деревянный дом более экономичный. Силикатный кирпич для возведения стен здесь не подходит вовсе.

Деревянное строение имеет высокую теплоемкость. Его ограждающие конструкции долго хранят комфортную температуру. Все же, даже бревенчатый дом нужно утеплять и лучше сделать это и изнутри, и снаружи

Строители и архитекторы рекомендуют обязательно делать теплорасчет при устройстве отопления для грамотного подбора оборудования и на стадии проектирования дома для выбора подходящей системы утепления.

Пример теплорасчета №4

Дом будет построен в Московской области. Для расчета взята стена, созданная из пеноблоков. Как утеплитель применен экструдированный пенополистирол. Отделка конструкции — штукатурка с двух сторон. Структура ее — известково-песчаная.

Пенополистирол имеет плотность 24 кг/мᶾ.

Относительные показатели влажности воздуха в комнате — 55% при усредненной температуре 20⁰. Толщина слоев:

  • штукатурка — 0,01 м;
  • пенобетон — 0,2 м;
  • пенополистирол — 0,065 м.

Задача — отыскать нужное сопротивление теплопередаче и фактическое. Необходимое Rтр определяют, подставив значения в выражение:

Rтр=a х ГСОП+b

где ГОСП — это градусо-сутки сезона отопления, а и b — коэффициенты, взятые из таблицы №3 Свода Правил . Поскольку здание жилое, a равно 0,00035, b = 1,4.

ГСОП высчитывают по формуле, взятой из того же СП:

ГОСП = (tв – tот) х zот.

В этой формуле tв = 20⁰, tот = -2,2⁰, zот — 205 — отопительный период в сутках. Следовательно:

ГСОП = ( 20 – (-2,2)) х 205 = 4551⁰ С х сут.;

Rтр = 0,00035 х 4551 + 1,4 = 2,99 м2 х С/Вт.

Используя таблицу №2 СП, определяют коэффициенты теплопроводности для каждого пласта стены:

  • λб1 = 0,81 Вт/м ⁰С;
  • λб2 = 0,26 Вт/м ⁰С;
  • λб3 = 0,041 Вт/м ⁰С;
  • λб4 = 0,81 Вт/м ⁰С.

Полное условное сопротивление теплопередаче Rо, равно сумме сопротивлений всех слоев. Рассчитывают его по формуле:

Эта формула взята из СП . Здесь 1/ав – это противодействие тепловосприятию внутренних поверхностей. 1/ан — то же наружных, δ / λ — сопротивление термическое слоя

Подставив значения получают: Rо усл. = 2,54 м2°С/Вт. Rф определяют путем умножения Rо на коэффициент r, равный 0.9:

Rф = 2,54 х 0,9 = 2,3 м2 х °С/Вт.

Результат обязывает изменить конструкцию ограждающего элемента, поскольку фактическое тепловое сопротивление меньше расчетного.

Существует множество компьютерных сервисов, ускоряющих и упрощающих расчеты.

Теплотехнические расчеты напрямую связаны с определением точки росы. Что это такое и как найти ее значение узнаете из рекомендуемой нами статьи.
Фото 2

Пример расчета трехслойной стены без воздушной прослойки

Давайте подробно рассмотрим пример теплотехнического расчета. Для начала необходимо определиться с исходными данными. Материалы для строительства стен Вы, как правило, выбираете сами. Мы же будем рассчитывать толщину утепляющего слоя исходя из материалов стены.

Исходные данные

Данные индивидуальные для каждого объекта строительства и зависят от места расположения объекта.

1. Климат и микроклимат

  1. Район строительства: г. Вологда.
  2. Назначение объекта: жилое.
  3. Относительная влажность воздуха для помещения с нормальным влажностным режимом составляет 55% ([1] п.4.3. табл.1).
  4. Температура внутри жилых помещений tint задается нормативными документами ([4] табл.1) и равна 20 градусов Цельсия».

text — расчетная температура воздуха снаружи. Она устанавливается по температуре самых холодных пяти дней в году. Значение можно найти в [2], таблице 1, столбец 5. Для заданной местности значение составляет -32ᵒС.

zht = 231 сутки – количество дней периода, когда необходимо дополнительное отопление помещения, то есть среднесуточная температура снаружи составляет меньше 8ᵒС. Значение ищут в той же таблице, что и предыдущее, но в столбце 11.

tht = -4,1ᵒС – средняя температура воздуха снаружи во время периода отопления. Значение указано в столбце 12.

2. Материалы стены

В расчет следует принимать все слои (даже слой штукатурки, если он есть). Это позволит наиболее точно рассчитать конструкцию.

В данном варианте рассмотрим стену, состоящую из следующих материалов:

  1. слой штукатурки, 2 сантиметра;
  2. внутренняя верста из кирпича керамического рядового полнотелого толщиной 38 сантиметров;
  3. слой минераловатного утеплителя Roсkwool, толщина которого подбирается расчетом;
  4. наружная верста из лицевого керамического кирпича, толщиной 12 сантиметров.

3. Теплопроводность принятых материалов

Все свойства материалов должны быть представлены в паспорте от производителя. Многие компании представляют полную информацию о продукции на своих сайтах. Характеристики выбранных материалов для удобства сводятся в таблицу.

Расчет толщины утеплителя для стены

1. Условие энергосбережения

Расчет значения градусо-суток отопительного периода (ГСОП) производится по формуле:

Dd = (tint — tht) zht.

Все буквенные обозначения, представленные в формуле, расшифрованы в исходных данных.

Dd = (20-(-4,1)) *231=5567,1 ᵒС*сут.

Нормативное сопротивление теплопередаче находим по формуле:

Rreq=a*Dd+b.

Коэффициенты а и b принимаются по таблице 4, столбец 3 [4].

Для исходных данных а=0,00045, b=1,9.

Rreq = 0,00045*5567,1+1,9=3,348 м2*ᵒС/Вт.

2. Расчет нормы тепловой защиты исходя из условий санитарии

Данный показатель не рассчитывается для жилых зданий и приводится в качестве примера. Расчет проводят при избытке явного тепла, превышающем 23 Вт/м3, или эксплуатации здания весной и осенью. Также вычисления необходимы при расчетной температуре менее 12ᵒС внутри помещения. Используют формулу 3 [1]:

Коэффициент n принимается по таблице 6 СП «Тепловая защита зданий», αint по таблице 7, Δtn по пятой таблице.

Rreq = 1*(20+31)4*8,7 = 1,47 м2*ᵒС/Вт.

Из двух полученных в первом и втором пункте значений выбирается наибольшее, и дальнейший расчет ведется по нему. В данном случае Rreq = 3,348 м2*ᵒС/Вт.

3. Определение толщины утеплителя

Сопротивление теплопередаче для каждого слоя получают по формуле:

Ri = δi/λi,

где δ – толщина слоя, λ – его теплопроводность.

а) штукатурка R шт = 0,02/0,87 = 0,023 м2*ᵒС/Вт;
б) кирпич рядовой R ряд.кирп. = 0,38/0,48 = 0,79 м2*ᵒС/Вт;
в) кирпич лицевой Rут = 0,12/0,48 = 0,25 м2*ᵒС/Вт.

Минимальное сопротивление теплопередаче всей конструкции определяется по формуле ([5], формула 5.6):

Rint = 1/αint = 1/8,7 = 0,115 м2*ᵒС/Вт;
Rext = 1/αext = 1/23 = 0,043 м2*ᵒС/Вт;
∑Ri = 0,023+0,79+0,25 = 1,063 м2*ᵒС/Вт, то есть сумма чисел, полученных в пункте 3;

Rтро = Rreq.

R_тр^ут= 3,348 – (0,115+0,043+1,063) = 2,127 м2*ᵒС/Вт.

Толщина утеплителя определяется по формуле ([5] формула 5.7):

δ_тр^ут= 0,038*2,127 = 0,081 м.

Найденная величина является минимальной. Слой утеплителя принимают не меньше этого значения. В данном расчете принимаем окончательно толщину минераловатного утеплителя 10 сантиметров, для того, чтобы не пришлось резать купленный материал.

Для расчетов тепловых потерь здания, которые выполняются для проектирования отопительных систем, необходимо найти фактическое значение сопротивления теплопередаче с найденной толщиной утеплителя.

Rо = Rint+Rext+∑Ri = 1/8,7 + 1/23 + 0,023 + 0,79 + 0,1/0,038 + 0,25 = 3,85 м2*ᵒС/Вт > 3,348 м2*ᵒС/Вт.

Условие выполнено.

Нормативные документы для выполнения расчета

Приведенное сопротивление и его соответствие нормируемому значению – главная цель расчета. Но для его выполнения потребуется узнать теплопроводности материалов стены, кровли или перекрытия. Теплопроводность – величина, характеризующая способность изделия проводить через себя тепло. Чем она ниже, тем лучше.

Во время проведения расчета теплотехники опираются на следующие документы:

  • СП «Тепловая защита зданий». Документ переиздан на основе СНиП 23-02-2003. Основной норматив для расчета [1];
  • СП «Строительная климатология». Новое издание СНиП 23-01-99*. Данный документ позволяет определить климатические условия населенного пункта, в котором расположен объект [2];
  • СП 23-101-2004 «Проектирование тепловой защиты зданий» более подробно, чем первый документ в списке, раскрывает тему [3];
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года) «Здания жилые и общественные» [4];
  • Пособие для студентов строительных ВУЗов Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].

* — дальше в тексте я буду ссылаться на нормативные документы и чтобы полностью не прописывать их название я укажу только номер, например [1].

Теплотехнический расчет не сложен. Его может выполнить человек без специального образования по шаблону. Главное очень внимательно подойти к вопросу.

Фото 3

Параметры для выполнения расчетов

Чтобы выполнить теплорасчет, нужны исходные параметры.

Зависят они от ряда характеристик:

  1. Назначения постройки и ее типа.
  2. Ориентировки вертикальных ограждающих конструкций относительно направленности к сторонам света.
  3. Географических параметров будущего дома.
  4. Объема здания, его этажности, площади.
  5. Типов и размерных данных дверных, оконных проемов.
  6. Вида отопления и его технических параметров.
  7. Количества постоянных жильцов.
  8. Материала вертикальных и горизонтальных оградительных конструкций.
  9. Перекрытия верхнего этажа.
  10. Оснащения горячим водоснабжением.
  11. Вида вентиляции.

Учитываются при расчете и другие конструктивные особенности строения. Воздухопроницаемость ограждающих конструкций не должна способствовать чрезмерному охлаждению внутри дома и снижать теплозащитные характеристики элементов.

Потери тепла вызывает и переувлажнение стен, а кроме того, это влечет за собой сырость, отрицательно влияющую на долговечность здания.

В процессе расчета, прежде всего, определяют теплотехнические данные стройматериалов, из которых изготавливаются ограждающие элементы строения. Помимо этого, определению подлежит приведенное сопротивление теплопередачи и сообразность его нормативному значению.

Теплотехнический расчет наружной стены, пример для пенобетонной стены

В качестве примера рассчитываются теплозащитные свойства стены, выложенной из пеноблоков, утепленной пенополистиролом с плотностью 24 кг/м3 и оштукатуренной с двух сторон известково-песчаным раствором. Вычисления и подбор табличных данных ведутся на основании строительных правил. Исходные данные: район строительства – Москва; относительная влажность – 55%, средняя температура в доме tв = 20О С. Задается толщина каждого слоя: δ1, δ4=0,01м (штукатурка), δ2=0,2м (пенобетон), δ3=0,065м (пенополистирол «СП Радослав»).
Целью теплотехнического расчета наружной стены является определение необходимого (Rтр) и фактического (Rф) сопротивления теплопередаче.
Расчет

  1. Согласно таблице 1 СП при заданных условиях режим влажности принимается нормальным. Требуемое значениеRтр находят по формуле: Rтр=a•ГСОП+b, где a,b принимаются по таблице 3 СП . Для жилого здания и наружной стены a = 0,00035; b = 1,4. ГСОП – градусо-сутки отопительного периода, их находят по формуле(5.2) СП : ГСОП=(tв-tот)zот, где tв=20О С; tот – средняя температура наружного воздуха во время отопительного периода, по таблице 1 СПот = -2,2ОС; zот = 205 сут. (продолжительность отопительного сезона согласно той же таблице). Подставив табличные значения, находят: ГСОП = 4551О С*сут.; Rтр = 2,99 м2*С/Вт
  2. По таблице 2 СП для нормальной влажности выбирают коэффициенты теплопроводности каждого слоя «пирога»:λБ1=0,81Вт/(м°С), λБ2=0,26Вт/(м°С), λБ3=0,041Вт/(м°С), λБ4=0,81Вт/(м°С). По формуле E.6 СП определяют условное сопротивление теплопередаче: R0усл=1/αint+δn/λn+1/αext. гдеαext = 23 Вт/(м2°С) из п.1 таблицы 6 СП для наружных стен. Подставляя числа, получаютR0усл=2,54м2°С/Вт. Уточняют его с помощью коэффициента r=0.9, зависящего от однородности конструкций, наличия ребер, арматуры, мостиков холода: Rф=2,54•0,9=2,29м2•°С/Вт.

Полученный результат показывает, что фактическое теплосопротивление меньше требуемого, поэтому нужно пересмотреть конструкцию стены.

Зачем выполняется расчет?

Перед началом строительства заказчик может выбрать, будет он учитывать теплотехнические характеристики или обеспечит только прочность и устойчивость конструкций.

Расходы на утепление совершенно точно увеличат смету на возведение здания, но снизят затраты на дальнейшую эксплуатацию. Индивидуальные дома строят на десятки лет, возможно, они будут служить и следующим поколениям. За это время затраты на эффективный утеплитель окупятся несколько раз.

Что получает владелец при правильном выполнении расчетов:

  • Экономия на отоплении помещений. Тепловые потери здания снижаются, соответственно, уменьшится количество секций радиатора при классической системе отопления и мощность системы теплых полов. В зависимости от способа нагрева, затраты владельца на электричество, газ или горячую воду становятся меньше;
  • Экономия на ремонте. При правильном утеплении в помещении создается комфортный микроклимат, на стенах не образуется конденсат, и не появляются опасные для человека микроорганизмы. Наличие на поверхности грибка или плесени требует проведения ремонта, причем простой косметический не принесет никаких результатов и проблема возникнет вновь;
  • Безопасность для жильцов. Здесь, также как и в предыдущем пункте, речь идет о сырости, плесени и грибке, которые могут вызывать различные болезни у постоянно пребывающих в помещении людей;
  • Бережное отношение к окружающей среде. На планете дефицит ресурсов, поэтому уменьшение потребления электроэнергии или голубого топлива благоприятно влияет на экологическую обстановку.

Вопросы и ответы

Источники

Использованные источники информации.

  • http://svoydomtoday.ru/utepleniye-konstrukciy/210-teplotehnicheskiy%20%d0%bf%d0%be%d1%80%d0%bd%d0%be
  • https://wallsgrow.ru/metodika-teplotexnicheskogo-rascheta-naruzhnoj-steny.html
  • http://postroy-sam.com/teplotexnicheskij-raschet.html
  • https://sovet-ingenera.com/otoplenie/project/teplotexnicheskij-raschet.html
0 из 5. Оценок: 0.

Комментарии (0)

Поделитесь своим мнением о статье.

Ещё никто не оставил комментария, вы будете первым.


Написать комментарий